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Abstract

Model Predictive Control (MPC) is an effective control strategy that
computes control action by solving an optimization objective. However,
application of MPC can be computationally demanding, and requires
estimating the hidden states of the system, which can be challenging in
complex system. In this work we have designed a different Neural Network
(NN) architecture by combining Long Short Term Memory (LSTM) and
NN, called LSTM supported NN (LSTMSNN) that accounts for past
information and present behavior of the system to learn the complex
policies of MPC. MPC is used to generate data during training time. This
learned model acquires a policy that maps system output to control action
without having to estimate the state and it is fast during test time. We
evaluated our trained model on varying target outputs, various initial
conditions and compared it with other trained models which only use NN
or LSTM.

1 Introduction
The operation of dynamic system must tackle many challenges. The challenges
arise due to non-linearity, disturbances and multivariate interactions. A control
method well-suited to handle these challenges is MPC. In MPC, the control
actions are computed by solving an optimization objective that minimizes a
cost function ( function of difference in target output and system output) while
accounting for system dynamics ( using a prediction model) and satisfying
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output and control action constraints. MPC is robust to modeling errors [1]
and has the ability to use high-level optimization objectives [5]. However,
solving the optimization objective in real time is computationally demanding
and often takes lot of time for complex systems. Moreover, MPC requires the
estimation of hidden system states (hidden states characterize system dynamics)
which can be challenging in complex non-linear dynamic system. Also it is
not susceptible to actual-system model and mathematical model mismatch.
Alternating methods to speed up the optimization process is linearizing [6] the
non-linear system dynamics (or) approximating the complex system to simple
system [7][8][9]. However, they do not account full dynamics of the system
to perform MPC. Function approximations like neural networks were used to
approximate complex system. However, they involve estimating the hidden states
which are cumbersome. We propose to use an off-policy learning algorithm that
can learn policies from MPC by only using system output (sensor data) without
having to estimate the state. Also, it is computationally less demanding and fast
at test time compared to MPC.

We propose LSTM supported NN model (LSTMSNN). The output of LSTM-
SNN is a weighted combination of outputs from LSTM and NN. We use this
combination because the current control action depends on past control actions,
current system output and target output. The LSTM part of LSTMSNN takes
past control actions as input. Because there is temporal dependency between
control actions, and we want to use LSTM to capture it. The NN part of
LSTMSNN takes current system output and target output as input. Because we
want to train NN to make a decision on control action by using current system
and target output.

We use a supervised learning approach to train LSTMSNN. First, we use
MPC to generate optimal control actions and system output under target output.
Then, we use these data to train LSTMSNN. During test time, LSTMSNN makes
a near optimal control action given previous control actions, system output and
target output. In other words, it takes system output close to target output.

Our main contribution is the combined LSTM and NN architecture that can
keep track of past control actions and present system information to take near
optimal control actions. Since LSTMSNN uses deep neural networks accounting
past and present information, we can train complex, high-dimensional states
(system with large number of states), non-linear system using this approach. The
training setup is one of the key benefits of our approach, since it allows training
with optimal data and full state information but still produces a policy that
uses only system output (sensor data) and not state estimation. Our trained
LSTMSNN Model is computationally less expensive than MPC. It takes 0.0011
second on an average for our model to generate control action at test time. Since
training our model can be paralleled, training can be done at a reasonable time.

The dynamic system in this project is the control of moisture content in a
paper machine. We show that LSTMSNN can learn policies that are robust to
a variety of perturbations and generalize well to various initial condition and
varying target output.
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2 Related Work
Model predictive control (MPC) is an effective and popular technique for control
of dynamic systems [11][12][13] but it suffers from computational complexity in
controlling complex systems. To overcome this, various functional approximations
techniques were used on MPC [14],[15],[16]. Neural Networks was used to
approximate MPC prediction step[7] and the optimization cost function. However,
this again involved estimation of hidden system states which are tedious to
estimate. NN were also used to approximate the nonlinear system dynamics
[8] and then MPC was performed on the neural network model. However, NN
generated system output tend to be oscillatory. Other approaches includes [9]
using a two tiered recurrent neural networks for solving optimization objective
based on linear and quadratic programming formulations. This again involved
estimation of hidden states at each instant. In MPC guided policy search [3],
MPC was used only at the time of searching optimal control policy and the
policy were learned using Neural Networks. On the contrary, our approach is
fully based on MPC control actions. NN was also used [10] to do the future
state prediction steps with policies learned using Proportional-Integral-Derivative
Controller (PID). However, the training of the model was carried out online.
Hence, this model could not learn all the possible control actions and failed in
specific test cases where it did not see the trained control actions during training.
However, in our approach of training LSTMSNN, training was done offline using
a MPC simulator and the predictions were found to be good even for the data
(system outputs) it did not see during training. LSTMs are effective at capturing
long term temporal patterns[2] and are used in number of applications like speech
recognition, smart text completion, time series prediction etc. Our approach
differs from the fact that LSTMSNN can have a track of past information about
the MPC control actions and the current system output behavior. This leads to
clever prediction of control output at the next instant with less oscillatory effect.
Moreover, our approach does not involve the burden of estimating the hidden
states that characterizes system dynamics.
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3 Preliminaries

3.1 MPC

Two Neural Network Approaches to Model Predictive Control

Yunpeng Pan and Jun Wang

Abstract— Model predictive control (MPC) is a powerful
technique for optimizing the performance of control systems.
However, the high computational demand in solving optimiza-
tion problem associated with MPC in real-time is a major
obstacle. Recurrent neural networks have various advantages
in solving optimization problems. In this paper, we apply two
recurrent neural network models for MPC based on linear and
quadratic programming formulations. Both neural networks
have good convergence performance and low computational
complexity. A numerical example is provided to illustrate the
effectiveness and efficiency of the proposed methods and show
the different control behaviors of the two neural network
approaches.

I. INTRODUCTION

Model predictive control (MPC), which is more advanced
than the well-known PID-control, has achieved great success
in practical applications in recent decades. One of the key
advantages of MPC is its ability to deal with input and output
constraints; another is that MPC can be naturally applied for
multivariable process control. Because of these advantages,
MPC has been used in numerous industrial applications in
the refining, petrochemical, chemical, pulp, paper, and food
processing industries. Academic interests in MPC started
growing in the late seventies, several publications provide
a good introduction to theoretical and practical issues asso-
ciated with MPC technology [1]-[3].

Most control techniques do not consider the future im-
plication of current control actions. MPC applies on-line
optimization to a system model. By taking the current state
as an initial state, a cost-minimization control strategy is
computed at each sample time, and at the next computation
time interval, the calculation repeated with a new state. The
basic structure of MPC is shown in Fig.1. As the process
model of MPC is usually expressed with linear or quadratic
criterion, MPC problems can be generally formulated as
linear programming or quadratic programming problems. As
a result, they can be solved using solution methods for linear
and quadratic programming problems.

Over years, a variety of numerical methods have been
developed for solving linear and quadratic programming
problems. Compared with traditional numerical methods
for constrained optimization, neural networks have several
advantages: first, they can solve many optimization problems
with time-varying parameters; second, they can handle large-
scale problems with their parallelizable ability; third, they
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Fig. 1. Basic structure of MPC.

can be implemented effectively using VLSI or optical tech-
nologies [4]. Therefore, neural networks can solve optimal
control problems in running times at the orders of magnitude
much faster than the most popular optimization algorithms
executed on general-purpose digital computers. Application
areas of neural networks include, but are not limited to,
system modeling, mathematical programming, associative
memory, combinatorial optimization, pattern recognition and
classification, robotic and process control.

In the past two decades, recurrent neural networks for
optimization and their engineering applications have been
widely investigated. Tank and Hopfield proposed the first
working recurrent neural network implemented on analog
circuits [5], their work inspired many researchers to develop
other neural networks for solving linear and nonlinear opti-
mization problems. By the dual and projection methods, Hu,
Liu, Xia, and Wang developed several neural networks for
solving general linear and quadratic programming problems.
These neural networks have shown good performance in
convergence.

In this paper, we propose two neural network approaches
to the design of MPC by applying two recurrent neural
networks [6] and [7]. Both neural networks have desired
convergence property and relatively lower computational
complexity. A numerical example shows that the proposed
approaches are effective and efficient in MPC controller
design. Furthermore, a comparison was made between the
two neural network approaches.

The rest of this paper is organized as follows. In Section II,
we derive both linear and quadratic formulations for MPC
controller design. In Section III, we present two recurrent
neural network approaches to MPC based on linear and
quadratic programming. In Section IV, we provide a numer-
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Figure 1: Basic structure of MPC

MPC is a multivariate control algorithm that uses an internal dynamic model of
the process, history of past control moves to yield optimal control actions. The
optimization objective function is given by,

min
u

N∑
i=1

wyi
(ytarget− yi)2 +

N∑
i=1

wui
∆u2i (1)

Where,
yi denotes i-th system output
ytarget denotes required target value
ui denotes ith control action
wyi

denotes weighting coefficient reflecting the relative importance of yi
wui

denotes the weighting coefficient penalizing difference in ui at successive
instances

3.2 LSTM
Figure 2 shows the flow of data through a LSTM unit or cell. Here xt, ht, Ct

are the input, hidden state, and cell state respectively. σ represents the sigmoid
function 1

1+e−x while tanh is the hyperbolic tangent; they are the point-wise
non-linear activation functions. Equations 8 through 7 are the corresponding
equations for figure 2. W and b are weight matrices to be learned and � is the
point-wise multiplication operator.

4



Figure 2: This figure shows the schematic of a LSTM unit used in the recurrent
neural network. Image courtesy of

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ft = σ(Wf [ht−1, xt] + bf ) forget gate (2)

it = σ(Wi[ht−1, xt] + bi) input gate (3)

C̃t = tanh(Wc[ht−1, xt] + bc) input state (4)

Ct = ft � Ct−1 + it � C̃t cell state (5)

ot = σ(Wo[ht−1, xt] + bo) output gate (6)

ht = ot � tanh(Ct) hidden state (7)

4 Model
In this work, we used different neural network architectures to construct LSTM-
SNN. First the state-of-art LSTM and deep Neural Network (NN) were used.
We then introduced a new architecture which is the weighted linear combination
of LSTM and NN, LSTMSNN, to learn the complex behaviour of MPC. The
block diagrams for training and testing phase are Figure 3 and Figure 4:

Figure 3: Training Phase
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Figure 4: Test Phase

4.1 LSTM
The LSTM is trained with data generated from MPC. The input to the model
are past MPC control actions and the output is the control action to be taken
at the next time step. Number of past MPC control actions to be considered is
the number of cells in the first LSTM layer. Figure 5 illustrates the LSTM part
of LSTMSNN.

Figure 5: Architecture of LSTM-only model

4.2 NN
The input to NN are the previous system output and target output. Note
that NN only takes one previous system output and one current target output.
Output of NN is the control action at the next time step. Figure 6 illustrates
the structure of NN part of LSTMSNN.
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Figure 6: Architecture of NN-only model

4.3 LSTMSNN
LSTM takes past control actions into account. NN takes past system output
and target output into account. MPC control actions depend on both current
system output and past input trajectories. So we take a weighted combination
of the two outputs from LSTM and NN and this will be the control action in
the next time step. The best configuration of LSTMSNN resulted after tuning
is shown in Figure 7:

Figure 7: Best configuration of LSTMSNN model
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5 Experimental setup

5.1 Physical system
The physical system we chose to study is the manufacture of paper in a paper
machine. The target output is the desired moisture content of the paper sheet.
The control action is the steam flow rate. The system output is the current
moisture content. The transfer function of the system is

G(z) =
0.05z−4

1− 0.6z−1
(8)

The time step used for simulation is 1 second.

5.2 Implementation
The neural networks were trained and tested using the deep learning library for
Theano. Training and testing were done on GPU (NVIDIA Geforce 960M) using
CUDA. We ran the MPC and generated artificial training data in Matlab.

5.3 Data collection
We required three variables for training: the target output, system output, and
control action. All the data used for training was artificially generated in Matlab.
We chose the target outputs and then used MPC to find the optimal action
actions and resulting system outputs. There are three different sets of data used
in this study. Each set of data had 1000,000 training points.
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Figure 9: This figure shows 500 time steps snippets of the three types of
training files used. Blue is the target output, red the system output and green
the control action. The binary, sinusoidal, and combined sequences are shown

on the top left, top right, and bottom respectively

The first set is a pseudorandom binary sequence (RandomJump). The target
output randomly jumps to a value in the range {(−3,−0.2), (0.2, 3)}. The target
output then remains constant for 10 to 100 time steps before jumping again.
The second set is a pseudorandom sinusoidal sequence. For each 1000 time steps,
a sine function with period (10, 1000) time steps was chosen. Gaussian noise was
added to the data with noise-to-signal ratio of 10. The last set of data is the
combination of the first two sets, a pseudorandom binary-sinusoidal sequence
(SineAndJump). At each time step, the target outputs from the two data sets
were added. The motivation for using pseudorandom binary data to train is
that a step function is the building block for complex functions. Any function
can be approximated by a series of binary steps. Furthermore, physical systems
are often operated with a step function reference. The motivation to train on
sinusoidal data is that our model should learn periodic behavior.

6 Simulation Results
We conducted experiments to show the effects of data set on LSTMSNN’s
performance, effectiveness of LSTMSNN over other comparison models and the
robustness of LSTMSNN under various initial conditions and varying target
outputs.

We trained LSTMSNN by using RMSprop [4]. We also used the two parts of
LSTMSNN, LSTM and NN, as comparison models in our experiments. They
are denoted as LSTM-only and NN-only. Details of model architectures are in
Table 1. Note that LSTMSNN uses a NN with many layers because we found
that a simpler structure does not perform well during test time. We think this
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is because our training data sets are large, which limits a simpler structure from
getting the most out of training data. However, decreasing the size of training
data decreases LSTMSNN’s performances during test time, especially under
varying target output. So there is a trade off between complexity of architecture
and size of training data.

Table 1: Details of comparison models

Model Optimizer Number of layers Sequence Length
LSTMSNN RMSprop 2 layers of LSTM and 4 layers of NN 5
LSTM-only RMSprop 2 5
NN-only Stochastic Gradient Descent 3 N/A

Our first set of experiments intend to show the effect of training data to
LSTMSNN’s performances. We test the performances of LSTMSNN by specifying
an initial condition. LSTMSNN will generate a control action in each time step
and get a system output. Previous control action, system output and a constant
target output will be the input to LSTMSNN in the next time step. We run
this process for 1000 time steps. We use mean square error (MSE) and offset
error (OE) to measure the performances. MSE is the average of squared errors
between model’s system output and target output during the process. OE is
the difference between model’s system output and target output after system
output converges. We will compare the performances of LSTMSNN by training
on RandomJump and SineAndJump, as shown in Table2.

Table 2: Performance comparison by testing different data set

Data Set Target Output MSE OE
RandomJump 2 0.02 0.01
SineAndJump 2 0.06 0.01
RandomJump 5 0.176 0.18
SineAndJump 5 0.078 0.01
RandomJump 10 1.28 1.8
SineAndJump 10 0.01 0.01

Although training on RandomJump outperforms SineAndJump when target
output is 2, LSTMSNN is able to maintain a low OE as the target output
increases. And it is more important for a controller to maintain a smaller OE
during the process. We think the size and diversity of data set causes the
performance difference. SineAndJump allows LSTMSNN to learn the optimal
control actions under more system and target outputs, whereas RandomJump
cannot.
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Table 3: Performance comparison between methods

Model Target Output MSE OE
LSTMSNN 2 0.06 0.01
NN-only 2 0.07 0.23
LSTM-only 2 5.56 Did not converge
LSTMSNN 5 0.078 0.01
NN-only 5 0.53 0.7
LSTM-only 5 62.42 Did not converge
LSTMSNN 10 0.01 0.01
NN-only 10 2.21 1.3
LSTM-only 10 167.78 Did not converge

Our second set of experiments show the effectiveness of LSTMSNN by
comparing with NN-only and LSTM-only. In experiment, each model starts with
the same initial condition and receives a system output after making a decision
on control action in each time step. The current system output, fixed target
output and current control action are the input to LSTMSNN and LSTM-only
in next time step. The current system output, fixed target output are the input
to NN-only in the next time step, because NN outputs the next control action
without using past control action according to Section 4.2. We run this process
for 1000 time steps for each model. We use SineAndJump to train each model.
Results are shown in Table 3
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(d) LSTMSNN’s system output for target
output=10

Figure 10: Performance comparison between LSTMSNN and NN-only for
different target output.Green line is the target output. Blue line is system

output

Figure 10 shows the system outputs by LSTMSNN and NN-only. LSTMSNN
does not outperform NN-only much in MSE when target output is 2. But NN-
only has a constant gap between its system output and target output, whereas
LSTMSNN does not. The difference in OE between LSTMSNN and NN-only
also reflects the flaw of NN-only. It is very promising that LSTMSNN maintains
an OE close to 0.01 as time step increases. LSTMSNN performs much better
than other models in all other cases. A target output of 10 is completely out of
the range in our training data, but LSTMSNN still can output system outputs
with low MSE and OE. The reason behind that is LSTMSNN takes control
actions calculating the trend of the past control actions using LSTM as well as
present system output with NN. The weighted combination of LSTM and NN in
LSTMSNN has learnt the time series and mapping (map from output to control
actions) trend so well that even though the data set range is -3 to -3 it is able to
make the system output reach target output of 10 with less oscillatory effect.
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Figure 11: LSTMSNN’s system output under various initial condition. Green
line is the target output. Other color denotes a different system output under

different varying initial condition.

The third set of experiments show LSTMSNN’s ability to handle various
initial conditions and varying target outputs. We use SineAndJump to train
LSTMSNN. We give LSTMNN a set of random initial conditions and set a fixed
target output. From Figure 11, we can see that LSTMSNN is able to adjust and
produce system output close to target output after some time steps. We also
give LSTMSNN varying target outputs, and we can observe that LSTMSNN can
accurately follow the varying target output from Figure 12. This demonstrates
that LSTMSNN is a robust model. System outputs of LSTMS are very good
when varying target output is smooth. We did find that LSTMSNN’s system
outputs are not as good when target output has some sharp corners. In those
cases, LSTMSNN has poor performances at those sharp corners but it starts to
perform well when target output becomes smooth again. We think a sudden
change in target output (sharp corner) causes LSTMSNN some time steps to
adjust its output.
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(b) Target output is quadratic
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(c) Target output is cubic
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Figure 12: LSTMSNN’s system output under varying target output. Green line
is target output. Blue line is LSTMSNN’s system output.

7 Conclusion and Future Work
In this project, we combine LSTM and NN to build a robust model LSTMSNN.
LSTMSNN learns from training data generated by MPC and is able to produce
good system output under new target output. We conduct experiments to
show the effectiveness of LSTMSNN over other methods and the robustness of
LSTMSNN under varying conditions.

This study was limited to training and testing on artificially generated data.
Further studies should examine the use of LSTM networks in controlling real
systems and training on real data either offline or online. It may also be of
interest to investigate the effectiveness of LSTM networks in controlling multiple-
input-multiple-output (MIMO) systems (which we did not have time to do
ourselves). In such systems, artificially generating data becomes difficult because
the number of possible pseudorandom parameters (e.g. the sinusoidal sequence’s
frequencies) grows exponentially with output dimension. Hence, real data is

14



required. Nevertheless, the results of this study suggest that artificial data
may even augment performance in MIMO systems. Finally, we were unable
to investigate multiple-agent systems which we sought to study in our project
proposal. In such a dynamic system, the agent would try to maintain some
system state while the actions of an adversary changes in time. This is an
extension of a MIMO system and could be studied in the future.
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